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Fredholm integral equations are constructed for unknown normal stresses on the 

domain boundary in the fundamental problem of plane elasticity theory, and 
their investigation is given. 

l. Formulation of the problem.Weshallsolvethefundamental 
plane problem of elasticity theory for external forces given on the boundary when the 
elastic medium occupies a finite or infinite domain of the plane of the complex vari- 
able z = 2 + iy, and the external forces on each of the bounding domains of the 
closed contours are statically equivalent to zero. 

We consider the (connected) domain S7 bounded by simple closed non-intersect- 
ing contours L,, L,,. . . , L,, of which the first encloses all the rest. The symbol 
L will denote the set of all contours. There may be no external contour L, , and 

then the domain s+ will be infinite (plane with holes). 

Let s- denote the domain complementing s+ in the whole plane, Sk- the 
domain enclosed within Lk (k = 1. 3.. . .’ in), and SD+, s,- the domains in- 

side and outside of L, , respectively. Furthermore, let n *be the normal to the 
line L drawn at any point and external relative to St, and T the direction of 
the positive tangent to - L at the same point. For definiteness, we consider that 
direction on I, positive which keeps the domain St on the right. We assume the 
line L to have continuous curvature everywhere. 

2. On properties of stress functions in a multi- 
connected domain, Representation of biharmonic 
fun c t i o n s, To facilitate the presentation let us recall certain known formulas 
of plane elasticity theory and let us indicate the properties of the stress functions. We 

borrow all the necessary formulas from the book by N. I. Muskhelishvili [l]. 
The biharmonic stress function IL (7, g) (Airy function) and its first derivatives 

are representable by the formulas 

u = Re [Z(F (z) -I- y. (r.)], Z = .Z - iy (2.1) 

i)rr &L 
ClX -+ i dy xzz ‘p (3) + ZG) + 9(z), $ (2) -= j(’ (r.) 

where cp, $, x are analytic functions of the variable 2 in a domain occupied by 

an elastic medium. In the finite domain S+ they have the form (see [l], Sect. 35) 

9 (z) = z 5 A, In ( 
k-1 k=l 

(2.2) 
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x (2) = 2 i yA.’ In (2 
k=l 

‘II (‘1 = i yk’ln tz - zk) + $,* tz) 
k=l 

where zk is a certain fixed point within Sk- (k = 1, 2,. . ., m), Ak is an arbitrary 
real number, ykr Yk’, YkH are arbitrary complex constants, and (Fe1 xer *,* are 
holomorphic (single- valued, analytic) functions in S + . 

It is seen that for the Airy function to be single-valued in S+ , it is necessary 
and sufficient to comply with the conditions 

Bk = yk’, Im yk” = 0 (k = 1, 2,. . ., m) (2.3) 

and this means (see [l], Sect, 33) that the external forces on the contour of each 
the holes are statically equivalent to zero. 

In the presence of (2.3), for the elastic displacements to be single-valued it 

necessary (and sufficient) that 

Al, = 0, yk = 0 (k = 1, 2,. . ., m) 

of 

is 

and this is equivalent to the requirement of holomorphicity of ‘p (z) in S+. These 
latter conditions, expressed in terms of the function u (5, Y), are 

s f3AU ’ 6Au 
~cls=O, St a2 

xan-Auan ds=O 
> 

(2.4) 

cls=O (k=l,2, . . ..m) 

Therefore, if the stress function u (z, Y) is single-valued in the domain S+ , 

then for the corresponding elastic displacements to be single-valued, it isnecessary 

and sufficient to comply with the conditions (2.4). 
Upon compliance with these conditions, the functions ‘p (z), 9 (z) are holomorphic 

in SC, and the function x (z) will generally be multivalued (it has the form of the 

right side in the second relationship of (2.2) for ok’ = 0, Im yh” = 0). 
The above-mentioned properties of the stress function were apparently first estab- 

lished by GrioIi [2] on the basis of the paper [S]. 
In the case when there is no contour &, , Sf is an infinite domain located out- 

side the contours L,, L,,. . ., L,,. In this case, under the same assumptions relative 

to the external forces applied to Lk , and the single-valuedness of the displacements, 

the nature of the stress functions as well as the potentials cp, x, ‘p remains as before 

in any finite subdomain of the domain S+. 
However, the functions cp and x will not generally be holomorphic in the whole 

domain S+. It is known that the Kolosov - Muskhelishvili potentials admit of the 
following representations in the neighborhood of the infinitely distant point (see [l], 

Sect. 36) 

cp (z) = ‘Fo (z) + cp* (Z)? x (z) = X0 (z) + X* (2) (2.5) 
(p. (z) = rz, x0 (z) = I”z2, I” = B' + iC' 
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Here 1’, B’, C’ are real constants characterizing the given stress field at infinity, 
and 3. is a certain real constant. The formulas (2.6) mean that the functions ‘p* (z), 

9* (z) are holomorphic outside a circle L, of sufficiently large radius R with 
center at the origin, including the infinitely distant point. 

Let us present certain fundamental formulas for representations of the biharmonic 
functions which are derivable by a standard method by using appropriate elementary 

solutions. A certain difficulity occurs just in the case of the infinite domains when 
the behavior of the function under consideration must be taken into account in infinit- 
ely remote parts of the plane. For the class of functions which we shall discuss later, 
this behavior is characterized completely by (2.5). 

The letters P, P, wiLl denote points of the domain S+ or S- , and Q, PO 
will denote points on the line I;, where Q will usually be the variable of integra- 
tion. The affixes of these points on the complex plane shall be Z, zlr t, to, respectiv- 

ely, where z = .Z + iy, z1 = x1 + iy,. The arc abscissas of the points t, to are 
denoted by s and so and are measured in the direction of the positive tangent T 
to the line L on each contour L, (k = 0, 1, . . ., m) . We shall not introduce new 

symbols to denote the coordinates of the points Q and PO by assuming t = 5 -t iy, 

to = x0 -;- iy,, or more accurately, t = X(S) + my (s) and to = z (so) f iy (so). 

To avoid the introduction of new symbols for the functions f of points of the line L 
we shall also sometimes not distinguish the notation f (t) and f (Q) or f (to) and 
f (I’,). 

Writing the Green’s identity for the pair of functions u, Au, and then for Au, 0, 

adding the formulas obtained, and relying upon the elementary solution of the bi- 
harmonic equation, we obtain the known representations for a finite domain 

1 
u (a = -yjy 5 [LO (u; P; Q) -i- 1 (u; P; Q)] dsy Z’ E ,j” (2.7) 

L 

0 = & ’ [Lo (u; P; Q) + 1 (n; P; Q)] ds, 
s 

PES- 

L 

Here (a/an, is differentiation with respect to the normal direction to ~0 at 

the point 0): 

1 
LO+; Pi Q) = 4 r21n~ anq 

[ 

1 aAlL a 1 -- 
A”anqr21nF I 

1 (u; P; Q).+ +--l)~--ua$+, QEL, r 
Q 

Applying the Laplace operator to both sides of (2.7), we obtain 

A.u (P) = & 1 1 (Au; P, Q) as, P ES+ 

L 

o=& l(A.u; P, Q)ds, PES- 
s 
L 

= i5-tl 

(2.8) 
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The unction Au is evidently harmonic in S+ , and should co~equently satisfy 
the condition 

l 8Au s YJ-+s=O 
L 

The known relationships 

.(P)~ql(u: P. Q)ds, PEF 

o=$- l(u; P, Q)b, s PES- 

L 

(2.9) 

(2.10) 

follow from (2.7) for a function u (x, Y) which is harmonic in S . 
Let us examine the case of an infinite domain in greater detail. Let us introduce 

a domain Sn located outside the contours L,, L,, . . ., ,!I+,, and within the circle 

LR of radius R with center at the origin; R is taken so large that the circle L, 

would enclose all the contours L,, k = 1, 2,. . ., m, whose set, i.e., total domain 
boundary, will again be denoted by L. Let us set 

U - ug = u+ (2.11) 

where uo is defined by the first formula in ( 2.1) and the last three formulas in (2.5) 

uO = Re [Z cpo (4 + x0 (41 = (2.12) 
ps [r --f- B’ cos 26 - C’ sin 2 61, z = Wie 

Gxfm) = 2 (f - B’), q$(=) = 2 (r + B’), TXJrn) = 2 C’ (2.13) 

(a,, uV, zxV are the stress components). Let us recall that the values of the stress 

components, i. e., the quantities (2.13), are given at infinity when considering the 
plane problem for domains containing the infinitely distant point of the plane. 

The right side of (2,12) is an Airy function corresponding to the homogeneous 
stress field caused by the forces (2.13). It is biharmonic in any finite part of the plane 
and for large 1 z 1 

ug = a (p*) (2.14) 

The relationships (2.7) are evidently valid in S, for the function 1~ -uo . There- 
fore 

2 
u* (P) = 2n s 

[r,” (u,; P, Q, + 2 (u*: P, Q)] ds, P ES, 

L+Lf$ 

0 
1 

=-zi- s 
[L” (u*; P, Q) + 1 (IA,; P, Q)]ds, P E Sk-, k = 1,x, . . . , m 

L+LR 

Moreover, analogously to (2.9) 

s aAu, 
an ds=O 

L-tLR 

Let us consider the function 

(2.15) 
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Ax0 (P) = -& 1 I (Au,; 
(2.16) 

P, Q)ds 
“k 

where P is an arbitrary point in any finite part of the plane z . on the basis of the 
first formula in (2.6), the estimates 

Au = 0 (I z I-“), i-‘Au, 
an = 0 (I I” I-3) 

are valid for large I z ‘I s consequently the integral in (2.16) tends to zero at H - 30. 
It hence follows that 

A(/%, - 0 everywhere on the plane z 

On the same basis, in the limit as R - XI , the equality (2.15) becomes 

- rlh, 

s 

’ r3Air 
7 ds = 

O/I \ 
i, 

a,2 as = 0 

I, 

(2.17) 

(2.18) 

It is almost evident that upon com$ance with the condition (2.18) the function 

cannot grow more rapidly than plnp at infinity. Taking (2.14) into account, we 

hence conclude that for large 1 z ) 

Lao = !I (I”“) 

Now on the basis of (2.17) and (2.19) 

00 (I. Y) = 31 + BY + Y 

(2.19) 

follows, where a, B, Y are arbitrary real constants. We shall not turn attention to 
this trinomial since it does not yield nonzero stresses. 

In the long run, the representations 
1 ’ 

7~ (P) = u,, (PI -kg- 
s 

[L” (1~; P, Q) T I (I!.; P, Q)] ds, P E S+ (2.20) 
L 

~0 (p) = -&, [L” (u; I’, Q) + 1 (!I; f’, Q)] ds, 
\ PfSh_-, h-=1,2, ,.. , m 
L 

hold for the stress function u (x, y) in the infinite domain S+ 
Correspondingly 

1 - 

Au0 (Pj = -& 1 1 (Au; P, Q) ds, PESk-, k=l,2, . . . . m 

L 

(2.21) 
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Now (2.18) should still be added to the preceding formulas, It is understood that 
the conditions (2.4) that the displacements be single- valued remain unchanged. 

3. Integral equations of the plane problem. Under 
the conditions introduced, the plane problem (the problem of plane strain or the 
generalized plane state of stress of an elastic body) is to determine the biharmonic 

stress function u (x, y) in the domain S+ by means of the boundary conditions 

g+ ig =fl(t)+if2(t)fc(t) on L 
(3.1) 

where fl, f2 are functions given on L which are single-valued and continuous on 
each of the contours Lk comprising L , and subject to the conditions: 

s flds+f:!dy=O (k=1,2,...,7?2) (3.2) 

and c (1) - ck = ak + iflk on Lk, where ck are complex constants to be 
determined together with the function u . Only one of the constants ck can be 
fixed arbitrarily; we shall consider c (t) ‘= 0 on Lo . Moreover,. it is required 
from the function u that it satisfy the following additional conditions 

s J$is=O (k= 0,1,2,...,m) 

9; 

(3.3) 

. 
SC a$-Au$)ds=O, ~(y~-Au~)&~O 

LI; Lk 

(3.4) 

(k = 1,2, . . . ) m) 

In the case of an infinite domain, the boundary conditions (3.1) are given in the 
set L,, L?,. . ., L,, and in conformity with this, one of the additional conditions, 
namely (3.3) ) drops out for k = 0 . The condition at infinity 

u(z, Y) = UO(T, Y) iO(lzl) (3.5) 

should still be appended to these conditions, where ~0 is given by (2.12). and the 
second term is the right side of the first formula in (2.1) if the corresponding right 

sides of (2.6) are substituted in place of cp and x . (More accurately, all the second 
order partial derivatives of u should be given at infinity, and this wilI be equivalent 
to giving the function ?.A itself in the form (3.5) ). The COIBtant dk can here alS0 

be given arbitrarily on any one of the contours Lk (k = 1, 2,. . . , m), be consider- 
ed zero, say, as we shall do. Therefore, the number of unknown real constants to be 

determined during the solution of the problem equals 2m and 2m - 2 in the case 
of the finite and infinite domains, respectively. 

proceeding to the construction of the integral equations for the finite domain S’J 

we rewrite condition (3.1) in the form 

~=go(t)+%z-!-BkY+~k (3.6) 

s 
l 

go(t) = j&x t- fz4/, s b(t) = f,$ -+ j,: on Lk(k = 0, I,..., m) 
0 
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According to the above, it can be considered that o,,, =_ f10 mm OY and we shall 
neglect the constants aR since they play no part in solving the problem. 

Let us insert (3.6) in place of 11 and &di3n in the right side of the first equal- 
ity in (2.7), and let us take into account that the function ahx -t- Fky + hk is 
everywhere harmonic. Then by using (2.10) we obtain the following integral repres- 
entation for the solution of the problem formulated (the additive constant X0 is omit- 
ted in the right side): 

(A(P), -&\ ’ L (u; P; Q)ds ‘; w(P), PES’ (3.7) 

?U(P)-= &S [(lllf-l)h”~V--p,(Q)~~,lf]ds (3.8) 

The function zu (P) (the sum of simple and double layer potentials with known 
densities) is given on the whole plane. 
P passes through the line L t 

It undergoes a discontinuity when the point 
which is not essential to the subsequent exposition. 

Let us pass to the limit P -+ P o (PO E L) in (3.7), and let us differentiate the 
limit equality twice with respect to the contour arc. (For the differentiation with 
respect to the arc s to be legitimate, it is necessary that the given functions go and 

h, be subject to definite smootheness conditions which are easily refined). Then 

using the boundary condition (3.6) for the function u (P) desired, we find (the prime 

denotes differentiation with respect to s) 

1 -s ’ -f$ L” (u; PO, Q) ds = g (to) + QX~ + pkq/ on L,, (3.9) 
2x 

L 

(k = 0, 1,2:. . . , m; t” = .ql -.I- iy,) 

g (to) = g,” (to) - a2w (PO) 1 &2 (3.10) 

We also pass to the limit as P 3 PO in the first equality in (2.8) and we use 
the known formula for the limit values of a double-layer potential. Then 

Au(P,,)=$~E(A u; Pm Q)ds, P,, E L 
L 

(3.11) 

where the limit values on the line L for the function Au are in the left side and 
values of the integral in the first equality in (2.8) on the same line are in the right 
side, 

The set of equations (3.9X (3.11) yields a system of integral equations in the 
unknown boundary values of the functions AU and dAu / dn. After the calcula- 
tions related to differentiation of the operator J_,” under the integral sign in (3.9), 

by using the notation 

Au(Q) =; o CC% +Au = v(Q) (3.12) 

we write the system of integral equations in the form 

& 1 [kir (to, t) v (r) + k,, (to, r) o (t)] ds = g (to) + or&” + l%vo” (3.13) 

L 

s 
th(to, qv (t) -t h27, (to, 0 CJ @>I d.9 = 0 
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- 4k,, (to, t) = 2 (hl r + 1) + COS 2a (t, t,,) - r (21n F + i)X 

k (to) sin a (t, tJ 

- 2k,, (to, t) = r-l sin a (t,, t) - r-l sin 2a (t, t,) cos a (to, t) - 

k (to) sin a (t, to) sin a (to, t) + k (to) cos ]a (t) - a (t,)l x 
(In r + l/J 

kzl (to, t) = 2 (In F + I), kaz (to, t) = 2 $--In + = 
Q 

2r-‘sin a (to, t) (F = 1 t - to ( ) 

where k (t) is the curvature of the line L at the point t, a (t) is the angle form- 
ed by the (positive) tangent to the line L at the point t and the axis OT, and 

a (to, t) is also an angle formed by the same tangent and the vector t,t , and 
measured in the positive direction from this latter. The notation a (t,) and a (t, t,) 
has an analogous meaning (the angles a (t,, t), and a (t, to) are shown graphically 
with their measurement directions in [4] ). 

The additional conditions (3.3) and (3.4), which become 

[v(t)ds=O (k=O,l,...,m) 
L;, 

(3.14) 

~[XV(t)+y’~(t)]ds=o, S[yv(t)-.&o(t)]&-0 

;;= l,Z,....m) 
5 

in the new notation, are appended to (3.13). 
Let us mention still another relationship which the functions Y and o should sat- 

isty. To this end, we calculate the normal derivative of the desired function u (z, y) 

by means of (3.7) and we integrate it along the line L . Taking into account that 

the function 11) is harmonic in Sf , we find 

s ;ds= &s [a(t)%- b(t) Au ds I 
I(t)= ljt-tI[(lnlt-t,j+f)sina(t,t,-,)ds,, 

L 

b(t) = s {cos[a(t) - a( (In Jt - to\ + 1) + +cos [a(to, t) + a(t,to)l} dso 
L 

Using the boundary conditions (3.1) and the notation (3.12) here, we find 

_!&(t)v(t)-b(t)o(t)]ds=G, G=+dx41d~ 
(3.15) 

L L 

We append the relationship (3.15) to the system (3.13) and (3.14) in the case of 
a finite domain ((3.15) is not required in the case of an infinite domain). 

Both equations (3.13) will be inhomogeneous in the case of an infinite domain s’, 
where their right sides, f and h, respectively, without terms with the constants 
ak, flk willbe 
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f (t) -= R (t) - d2uo i ds2, h (t) = Au, ( onL) (3.16) 

The function UO is defined by (2.12). Conditions (3.14) remain unchanged ex - 
cept for one, for h- = 0, which evidently drops out here. 

Even in the case of a finite domain it is understood that a function analogous to 
UO can be introduced if only the plane problem for a (finite) simply-connected do- 

main sot bounded by the contour Lo allows of a closed form solution. 
It is known that the plane problem of elasticity theory has been studied repeatedly 

by different authors by the method of integral equations [5 - 91. The advantage of 
the integral equations in v and o presented above is that their solution affords a poss- 
ibility of determining the contour stresses of interest in problems for multiconnected 

domains, without any further calculations. 

A somewhat different system of equations for Y and o is constructed in [lo]. One 
of the equations of this system agrees exactly with the second equation in (3.13). 

As in [lo], the representation (3. 7) taking accamt of the boundary conditions of 
the problem in terms of the function w and resulting in the second equation in (3.13), 
is used above to construct the integral equations. Hence, it is sufficient to use just 
any one of the two possible conditions of the plane problem to obtain the complete 

system of integral equations. In this paper, the condition 

(I?,, ; as‘2 r i* on 1, 

is used (f*, G are functions given on L ), while the condition 

CPU , a7’” = g* on L (3.17) 

is given in [lo], where 8 / 3T is differentitation with respect to a certain fixed direc- 
tion coincident with the direction of the tangent at any point of the boundary L. 

The meaning of condition (3.17) is not completely clear to this writer: the initial 

conditions of the problem (3. 1) apparently do not permit the determination of the left 

side of (3.17) along the contour Lh. 
It is assumed R* z 0 in condition (3.17) on the outlines of holes free of external 

forces (only such holes were considered in [lo] ). Even if it is considered that such 
conditions are valid, it is not at all convenient to use them. They eliminate the 

constants ok, &, without which the plane problem is generally incorrect; it is well 
known that only a suitable selection of unknown constants a, /3 can assure the neces- 

sary single-valuedness of the elastic displacements. The lack of these constants in 
~101 results in a certain number of linear algebraic equations for discrete values of the 

solution of the integral equations turning cut to be excess. 
However, it can happen in some particular cases that a part of the constants a, fi 

or even all the constants are zero. The acceptability of the numerical results in the 

examples of two circular holes considered in [lo] should apparently be explained by 
this (the constants a, fi are generally not needed in a problem with one hole). 

Furthermore, the first condition in (3.14) for k = 0 is absent in [lo]. and as will 
be seen later, this condition plays an essential part in the investigation of the integral 
equations (the authors of [lo] were not concerned with an investigation of their in- 

tegral equations). 
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4. Inve4tigetion of the integral crqurtfont, Letus 
start with the case of a finite domain and let us consider the homogeneous system of 
equations 

(4.1) 

Let us introduce the function U biharmonic in 
ous functions V and CT on L by the integral 

S+ , defined for arbitrary continu- 

Let us call it ug for some solution vO? a, of the homogeneous system, and let 
us apply the Lapiace operator to it. We obtain 

The limit values of the right side of (4.3) on I. are zero when the point P 
tends from s- to the point PO on L according to the first equation in (4.1). But 
the right side of (4.3) is harmonic in any of the domains S ,<- (k -_ 0, 1,. . , ! m) 
and is bounded at infinity because of the third equation in (4.1). Hence, on the 
basis of uniqueness of the harmonic function 

After passing to the limit as P -+ PO from inside and outside of S’ I we 
obtain, respectively, from (4.3) and (4.4) 

Let us fix the point PO on L , and let us differentiate (4.3) and (4.4) with 
respect to the direction of the external normal to L at the point PO. 

Passage to the limit in the equalities obtained in this manner as PO -+ P, we 
find 

& Avo(Po) = v. (PO) on L 

and (4.2), whose left side equals u. for Y -+ Vo, o = o. becomes 

PO(P) =&~L"(vo;P*Q~d% PES” 
L 

(4.6) 
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There hence follows on the basis of the Green’s formula (2.7) 

-& s l(c,,; P, Q)ds = 0, PES (4.8) 
L 

~SIL”(l.O;P,Q)+Z(uu;P,Q)lds= 0, PES- 

L 

Now, let us note that a biharmonic function in Sf , equal to the right side of 
(4.7), is continuous up to the boundary L . Its limit values have a second order 
derivative with respect to the arc of the contour, which equals zero identically on L 
because of the first equation in (4.1). This means that the function mentioned should 
take on constant values on L , and the second equality in (4.8) yields 

&@,,;P,Q)ds= -&, PELT, k=O,i,..., m (4.9) 

L 

Limit values of the appropriate integral from S- on ,C are in the left side of 

(4.9), and hh are certain perfectly definite real constants. 

On the basis of the known properties of a double-layer potential, vO = hk on 
Lk (k = O,l,. . ., m) follows from the first equality in (4.8) and (4.9). The 
function expressed by the second integral in the left side of the second equality in 

(4.8) is harmonic in each of the domains S ,-comprising S-, and is bounded at 
infinity by virtue of the last equation in (4.1). Hence, (4.9) means 

-i&( 00; P, Q)ds = - At<, P E Sk-, k=O,l,...,m (4.10) 
L 

Using the limit properties of a simple-layer potential exactly as in the derivation 

of (4.6), we find from the first equality in (4.8) and (4.9) 

au0 /an =- 0 on Lk (k = 0, 1, . . ., m) 

Now let us use the Green’s identity for the functions AuO, uo, where u. is 

given in S+ by (4.7). We have 

1s (A,v,)*ds = 5 (A.v+- - v,,$) ds 
s+ L 

(4.11) 

Because of the equations established above for the limit values of the function uO 
and its normal derivative, as well as the relations written by the third equality in 
(4.1) for u = uo, the right side of the preceding formula equals zero. Therefore, 
A.v,=(I in S+,and vo(Q)=oo(Q)=O on Lonthebasisof(4.5)and 
(4.6). Uniqueness of the solution of the system (4.1) is proved. 

Turning to the case of an infinite domain, we first clarify the behavior of the 

function (4.2) for large I 2 I. After elementary calculations, we obtain the asymp- 
totic formula (A and B are real and complex constants) 

8nv (P) = A ) z2 1 In 12 ) + (BS f Bz) (In l 2 l + l/*) + 
O(ln Iz I) (Iz 1-m) 

(4.12) 
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- A - f v (t)ds, 
i, 

B = [ [tv (t) - it’a (t)] ds 
i 

(4.13) 

In the case of the infinite domain, the homogeneous system will consist of the first 
two equations in (4.1) obtained from the inhomogenecus equations for fi = fa = ak 
= pk = 0 on Lk (k = 1, . . ., n), r = B' = C' = 0 and the following 

additional equations to a total number of m -k 2: 

s v(t)&=0 (k= 1,...,7?1) (4.14) 

% 

\ [xv (t) + y’o (t)] ds = [ [yv (t) - x’cr (t)] rls = 0 
i i 

(L is again the set of contours L,, L,, . . ., L,). 
Analogously to the preceding, we introduce the function ua defined in terms of 

uo, oo the solution of the homogeneous system, by means of (4.2), and the limit 

relationships (4.5) and (4.6) are established on the basis of the Green’s formula (2.21) 
for u. s 0 from the second equation in (4.1) and the first equations in (4.14). 

Using (2.20) for u. E (I and the first equation in (4.1) we find as in the case of a 
finite domain 

vo=- k, h dv, I dn = 0 on Lk (k = 1, 2, . . ., m) 

where hk is some real constant 
Formula (4.11) remains for an infinite domain. In order to prove this, the integral 

(4.15) 

Lk 

is investigated for large 1 z I. 
According to (4.14), the coefficients A and B from (4.. 13), which correspond 

to the function v0 , equal zero, and (4.12) yields the following estimate for u. 

v0 = 0 (in 17, I) (4.16) 

It shows that the function v. is representable outside La by (2. l), where ‘p 
and x are the series (2.6) without the coefficients a0 and aof_. On the basis of 

the above, the estimate (4.16) allows the following strengthening: 

+ = 0 (I z I-‘), 
~Av, 

vo = 0 (Q, A270 = 0 (I z I-%), an = 0 (1 2 I-“) 

In the presence of the preceding formulas, the integral (4.15) tends to zero as 

I? -+OO and this indeed proves the validity of (4.11) in the case under consideration. 

As before, ~~~ = 0 in S+ follows, meaning y. (Q) = u. (0) = 0 on L. 
Let us turn to the inhomogeneous integral equations, and because of the complete 

analogy we limit ourselves to considering the case of a finite domain. Let us first 

note that the first equation in (3.14) can be written as 

--$&PO) = 0 
0 

(4.17) 
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the 

the 

go (PO) - mz0 - BkY0 on L (k = 0, 1, . . . ) m) 

Limit values of the appropriate functions from the domain s+ are everywhere in 
preceding equality. 

The function Q defined by (4.18), is single-valued and continuous on each of 
contours Lh. for any v and G. Hence, the equation obtained from (4.17) by 

differentiation with respect to the arc so, namely, the equation 

da / ds,aQ (PO) := 0 (4.19) 

is equivalent to the initial equation. (For the differentiation of (4.17) with respect to 
the arc so to be valid it is first necessary to raise the smoothness of the line L , 
to require, say, that the coordinates of its points 2, y have continuous derivatives 
with respect to S to the third order). Hence, if the first equation in (3.13) is replac- 
ed by (4.19) in the integral equations system under consideration, then we obtain a 
system completely equivalent to the initial system. 

On the other hand, the system (4.19) and the second equation in (3.13) will be a 
system of singular integral equations of normal type with zero index (see [4], Chapter 

VI), as can be seen on the basis of (3.13) for the kernel kij . As is known, the 

Fredholm theory which we shall use, is valid for such a system. 
The presence of the solution of the system (4.19) and the second equation in (3,13) 

is assured by the existence theorem for the solution of the fundamental biharmonic 

problem for multiconnected domains [5,9]. (We prefer not to resort to the appropriate 
Fredholm theorem here to avoid the investigation of the associated homogeneous sys- 
tem). The final number of arbitrary constants in the solution in terms of nontrivial 
solutions of the corresponding homogeneous system of integral equations is determined 

uniquely on the basis of the uniqueness, proved above, for the solution of the system 

(3.13), the first equation in (3.14) and (3.15). Hence, the solution U, o mentioned 

will depend exclusively on g, a k, I’, k and will contain the unknown constants ak 
b k linearly. 

If this solution is substituted into the last two conditions in (3.14), we then obtain 
a system of linear equations to determine sky Pk ( which becomes 

(4.20) 

in the notation 

“j = dj, pj 1 a,+j (j z 1. 2. . . ., nt) 

where Fi are unknown constants dependent on the functions fi, f, given on L and 

which vanish for fi (t) = f2 (t) = 0 on L, and aik are also definite constants 

dependent only on the geometry of the domain S+ (there is no real need to solve 
the integral equations in the system (4.20)). 

The system (4.20) defines the constants u ,+ (k = 1, 2, . ,2m) uniquely. In 
fact, let the system have the solution ako for Fk = 0 (k = 1, 2,. . ., 2~). Then 
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the system of integral equations (3.13), (3.14) will have a solution for I: (rj = o 
on L , and ak = aho, & = a;,,. Substituting this value of vO, csO in the right 
side of (4.2), we construct the functions u,, (P) which is biharmonic in S+ and 
satisfies the following boundary conditions on L 

av, , av, 0 

8X 
-= Ti ay ah.’ + ia,,;, on &.iL=O, 1, . . . . q:j) 

and also the conditions of single-valuedness of the elastic displacements. Then u0 = 
ccnst in S- and all the zLkO = 0 on the basis of the uniqueness of the solution 
of the plane problem. 

Therefore, the system of integral equations (3.13) - (3.15) is solvable for any 

(sufficiently smooth) boundary values ii, fs subjected to the above-mentioned 
constraints, and determines the functions u, cr and the previously unknown constants 

akr pk uniquely. 
The integral equations(3.13)have kernels with logarithmic singularities and, as 

follows from the above, are equivalent in the sense of the existence of the solution of 
regular equations of the second kind. A numberical realization of the solutions can 
be accomplished by known, well-developed methods. 
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